首页 » 知识 » 多边形内角和定理(多边形内角和定理是什么)

多边形内角和定理(多边形内角和定理是什么)

胜艺 2024-07-23 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

多边形内角和公式

n边形的内角和公式为(n - 2)×180°(n大于等于3且n为整数)。

推论

任意正多边形的外角和=360°

正多边形任意两条相邻边连线所构成的三角形是等腰三角形

多边形内角和定理证明

在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。

即n边形的内角和等于(n-2)×180°.(n为边数)。

扩展资料:

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。

即n边形的内角和等于(n-2)×180°.(n为边数)。

证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)

所以n边形的内角和是(n-2)×180°.

证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,

这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)

以P为公共顶点的(n-1)个角的和是180°

所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.(n为边数)

参考资料来源:百度百科-多边形内角和定理

多边形内角和是多少

内角和是(边数减2)乘以180度。

内角和是一个数学名词,多边形的所有内角度数总和叫做内角和。

多边形如果边数不变,不管怎么改变形状,其多边形的内角和都是相等的,定义内角为顶点沿不同切方向的夹角,已知一个多边形的内角和,那么它的边数等于内角和除以180度加2。

多边形内角和定理

多边形内角和定理:多边形内角和定理n边形的内角的和等于:(n-2)×180°,则正多边形各内角度数为:(n-2)×180°÷n。

多边形内角和定理证明:

证法一:

在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°,所以n边形的内角和是n·180°-2×180°=(n-2)·180°,即n边形的内角和等于(n-2)×180°。

证法二:

在n边形的任意一边上任取一点P,连结P点与其他各顶点的线段可以把n边形分成(n-1)个三角形,这(n-1)个三角形的内角和等于(n-1)·180°,以P为公共顶点的(n-1)个角的和是180°所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°。

请点击输入图片描述在n边形的任意一边

多边形的内角和公式

正多边形内角和定理n边形的内角的和等于:

(n - 2)×180°(n大于等于3且n为整数)。

(1)任意凸形多边形的外角和都等于360°。

(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3)。

(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】。

反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。

多边形的内角和解答技巧:

设多边形的边数为N。

则其内角和=(N-2)*180°。

因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)。

所以N边形的外角和。

=N*180°-(N-2)*180°。

=N*180°-N*180°+360°。

=360°。

即N边形的外角和等于360°。

设多边形的边数为N。

则其外角和=360°。

因为N个顶点的N个外角和N个内角的和。

=N*180°。

(每个顶点的一个外角和相邻的内角互补)。

所以N边形的内角和。

=N*180°-360°。

=N*180°-2*180°。

=(N-2)*180°。

即N边形的内角和等于(N-2)*180°。

多边形的内角和公式和外角和公式有哪些?

多边形内角和公式:(n-2)×180°。多边形外角和公式:360 °。与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角,任意凸多边形的外角和都为360°,多边形所有外角的和叫作多边形的外角和。

多边形外角和的证明:

n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°-∠3、...、180°-∠n,外角之和为:

(180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)。

=n*180°-(∠1+∠2+∠3+...+∠n)。

=n*180°-(n-2)*180°。

=360°。

相关文章

  • 暂无相关推荐