本文目录一览:
- 1、如何制作简单的天文望远镜
- 2、谁知道天文望远镜简易制造方法?
- 3、天文望远镜简笔画 按照步骤尝试画一下吧
- 4、天文望远镜 校正光轴的方法
- 5、怎么做一个简易的天文望远镜
- 6、如何制作天文望远镜?要材料简单
如何制作简单的天文望远镜
普物实验-望远镜制作
原理回顾
1.
折射式望远镜
折射式望远镜的光学系统,
实质上与显微镜一样。二者都是由目镜观看物镜所造成的像。它们的差别是:望远镜是用来看长距离的大物体,而显微镜是用以观看眼前的小物体。
下图说明天文望远镜的构造和原理。物镜使物体O行成缩小的实像I。I’是I经由目镜所造成的虚像。与显微镜的情况相同,I’可以呈现於眼睛之近点与远点间的任一位置上。实际上,望远镜所观看的物体离仪器非常远,所以它造成的像I之位置几乎就在物镜的第二焦点上。此外,若I’这个像在无穷远处,则I位於目镜的第一焦点。因此,目镜与物镜间的距离(亦即望远镜的镜筒长度)便等於物镜与目镜的焦距之和。
望远镜的角放大率之定义为:最后的像I’对眼睛所张之角与物体对裸眼所张的角之比值。这比值可表为物镜与目镜的焦距之比,其推理方式如下。上图中,通过物镜第一焦点F1,并通过目镜第二焦点F2’的光线,用粗线画出以示强调。物体(未画出)对物镜所张的角是u,他对裸眼所张的角度也是这个值。此外,由於观察者的眼睛在焦点F2’右侧不远处,所以最后的像对眼睛所张的角等於u’。ab与cd这两段距离显然相等,并等於像I的高度y’。由於u与u’都很小,可以用它们的正切值代替它们(u=tanu)。由F1ab与F2’cd两个直角三角形可得
因此,
於是,望远镜角放大率等於物镜焦距除以目镜焦距之商。负号显示所成的像是倒像。
2.
双筒望远镜
若这望远镜是用来做天文观测的,那麼倒像并非缺点;可是我们希望望远镜能形成正立的像。稜镜双筒望远镜(prism
binocular)可以达成这目的,下图显示其剖视图,其中的物镜与目镜之间,有一对45°-45°-90°全反射稜镜。在稜镜斜面上发生的四次反射,把像倒过来,而成为正立像。
3.
反射式望远镜
反射式望远镜里,一凹面镜代替透镜作为物镜,如下图所示。这种装置在大型望远镜方面,有许多理论上及实际上的优点。反射面镜根本不会有色像差,而且消除它的球面像差比消除透镜的要容易多。镜面不须采用透明材料,而且反射镜可以做的比透镜坚固,因为透镜只能由边缘支持。世界上最大的反射式望远镜之镜面直径超过5公尺。由於像形成於入射光线所经区域的一部份,所以只有把入射光束的一部份挡掉,才能用目镜直接观看这个像;只有最大的望远镜才适於这麼做(否则光量太弱)。图(b)及(c)显示别的装置法,它们是用反射面镜把像向侧方,或是经由原镜上的小孔反射出去。
4.
鉴别率
(resolution)
照相机镜头的鉴别率可定义为:像的每1
cm中,勉强可变认为分开的线之线数。假设某镜头之焦距为50
cm,鉴别率为100
条线/cm。则100
m外一物体上的分开2
cm的线条仍能辨识!
材料:
大凸透镜(物镜)、小凸透镜(目镜)、手电筒、厚纸板、胶水、尺等
步骤一:
将大凸透镜(物镜)固定,在透镜后方放置一纸片,以手电筒照射透镜,移动纸片观测透镜焦点。
步骤二:
重复步骤一,将大凸透镜(物镜)换成小凸透镜(目镜),观测透镜焦点。
步骤三:
设计一可变焦之望远镜。
步骤四:
以自制之望远镜观看尺之最小格线(0.1
cm),移动尺与望远镜间之距离,观察最远可辨识尺之格线的距离。
谁知道天文望远镜简易制造方法?
一、镜身的装配
牛顿式反射望远镜的镜身(结构见下图)主要由镜筒、主镜、副镜和目镜构成,下面就分别说说镜筒、物镜座、副镜支架和目镜调焦座的设计与制作。
镜筒
镜筒是光路中各大部件的支撑物,特别是要支撑重量较大的物镜和物镜座,因此必须有足够的强度。镜筒的内径一般比物镜直径大2~3厘米,以方便物镜的安装和调节。镜筒的长度一般至少等于物镜的焦距,如果太短,将来主镜焦点伸出镜筒会太长,除非副镜尺寸足够大,否则当用广角目镜观测时,视场边缘肯定会有光线损失。
如果找不到大小合适的金属或塑料筒做镜筒,那么可以因地制宜,根据自己所具有的加工能力来选材制作。如果附近工厂有卷板机,可以请人用1.5mm厚的铝板按需要的长度和直径卷成圆筒,接口处可焊接或拉铆(我的镜筒就是用这种方法做的,结实而且轻便,效果非常满意)。也可以请白铁匠用铁皮或1.5mm厚的铝板卷制镜筒,在筒口处弯边可以增加强度(张大庆先生用的就是这种方法)。杨世杰老师介绍过在圆柱型芯子上用多层厚纸条按相互交错了的方向卷制镜筒的方法,我以前尝试卷过直径10厘米的镜筒,强度很大,效果很好。但要卷直径大于20厘米的镜筒时,会有几个实际的困难:首先是芯子不好找,其次是随着镜筒直径的增加,手工卷制的工作量和难度也会加大,各层纸粘合不紧密时,镜筒的强度会受影响,很难支撑20厘米的物镜和物镜座,将来也很难接相机拍照。除了圆形镜筒,还可以考虑方形筒。很多爱好者用木板制作方形镜筒,对于能找到木匠的爱好者来说这也是一种不错的方法;辽宁的张健同学在98年第一期《星空观测者》上介绍过用铝合金型材制作方形镜筒的方法,也很有新意。
物镜座
物镜座是自制望远镜中的一个重点,它不但要牢固固定物镜,同时还要允许物镜的指向可以在一定范围内调节,另外还有一点容易被人忽视的是,不能将物镜卡得太紧,否则物镜会产生形变,影响成像质量。
杨世杰老师介绍过两种物镜的固定方法。第一种是最简单的方法(下图A):找一个与镜筒内径相同的木板(底板),在上面相距120°的位置上贴上三块有弹性的泡沫橡皮或塑料垫片,把物镜放在上面,然后用三个金属片弯成的小钩将物镜固定在底板上(不要卡得太紧,以免物镜变形),最后用三个角铁把底板固定在镜筒上即可。这种方法制作简单,镜片固定牢靠,但物镜的指向只能安装时调节好,以后再想改变很麻烦。对于短焦比的望远镜,校准光轴是很重要而且时常需要做的事,所以我觉得不太合适用这种方法。第二种方法(下图B)首先将物镜固定在一个小板上,小板通过三个螺栓与底板相连,螺栓中间加上弹簧,通过调节底板背后的螺母可以很方便地调节物镜的方向。这种方法制作相对复杂些,但使用效果却非常好,也是现在十分流行并且使用最多的一种方法。
而随着物镜口径的增大,其重量也在增加,上述第二种方法中所用的螺栓和弹簧的强度必须增加,这最终会导致物镜座的重量随物镜口径的变大而急剧增加。因此对于较大口径的物镜,又有了一种新的固定方法。这种方法使用一块底板,没有小板,没有弹簧,但底板上却保留三个螺栓,螺母嵌入底板中,物镜片是直接放在螺栓的三个顶点上的,调节螺栓可以调节物镜的指向(螺栓顶点要打磨光滑,与镜片之间要垫上薄的耐磨物质,以防止划伤镜片);为防止镜片滑动,要在底板上钉三个小木块(防侧滑木块)挡在镜片边上(不可将镜片卡得太紧,应留有1~2毫米的间隙);为防止运输时物镜片翻倒(正常观测时镜筒开口都是朝上的,物镜重量落在三个螺栓上,不会翻倒),三个小木块上还要各加一个木片,木片末端要超出物镜边缘3、4毫米(见下图)。观测时,物镜片的底面落在螺栓的三个顶点上,侧面只与三个防侧滑木块中靠下部的两个接触,与三个防翻倒木片不接触,没有任何外力卡住物镜,因此物镜不会产生任何形变。
固定20厘米的反射镜片,用上述第二种和第三种方法都行。我选用的是第三种方法。实际制作时,底板可以选用1厘米厚的整块木板或多层胶合板制作,如果是方镜筒,可以直接将木板锯成方形,如果是圆镜筒,可以请人用线锯或自己直接用钢锯条锯出圆形。底板应比镜筒内径小1~2毫米,能在镜筒内方便地进出。为防止木板受潮,有条件的可以对它作浸蜡处理,至少也要刷一层油漆。调节物镜方向的螺栓可以到五金店买M5规格的,为防止划伤镜片,我在镜片背后与螺丝接触的地方贴了三层透明胶条;为防止螺丝的松动,我没有使用螺母,直接在底板上钻直径略小于螺丝直径的孔,将螺丝旋入,借助木头的弹性和张力,可以将螺丝紧固,同时借助改锥(起子)也可方便地对其进行调节。连接镜筒和底板的角铁必须牢固,我选用了2.5毫米厚、15毫米宽的角铁,用两个螺栓与底板连接(其强度比直接用木螺钉要大得多),与镜筒之间也用螺栓连接。镜筒上和角铁上钻的孔应注意位置对齐,孔径以刚好穿过固定螺丝为好,确保以后每次安装物镜座时物镜与镜筒的相对位置不变,为以后调节光轴打下良好的基础。防侧滑木块和防翻倒木片的制作可以根据实际情况采用不同的方法,注意要确保物镜的安全,同时要让物镜有一定自由活动的空间。
目镜调焦座
目镜调焦座的位置是由主镜筒直径、主镜焦距以及主镜焦平面伸出主镜筒的距离决定的,可以按比例画图,然后从图上量出具体位置。
目镜调焦座要求能稳定支撑目镜,并可在一定范围内(2~3厘米)方便地调焦。它的轴心(也就是目镜的轴心)要求尽可能与主镜筒轴心垂直并相交,如果以后打算接相机拍照,那它还必须有足够的强度。
如果感觉到在圆形镜筒上固定目镜调焦座比较困难,可以分成两部分来做:首先做出一个平面,然后在此平面的基础上固定目镜调焦筒。
如何做出平面呢?到装修店找一小段铝型材,用螺栓固定在主镜筒外壁(如下图),是一种容易实现而且使用效果很好的方法。注意最好找厚度不小于1毫米的铝型材,这样其强度才有保证。
这里再介绍一种做平面的方法:在主镜筒的内壁固定一块托板(见下图)。一般主镜与镜筒之间有1~2厘米的间隙,所以不必担心托板和目镜调焦座会挡住主镜光线。
我采用的就是这种方法,托板由一块120毫米×100毫米×2毫米的钢板制成(见下图),两侧折弯,各打四个安装孔,然后在镜筒上打上相应的孔,就可以用螺栓将托板固定在镜筒的内壁上。考虑到将来会接照相机,托板上会受较大的力,所以安装孔较多,所用材料也较厚。如果发现目镜调焦筒轴心有些歪,可以改变各螺栓所用垫片的厚度。(图中有一个长条形的“副镜托杆安装孔”,这是为下一步安装副镜作准备的。)
有了平面,目镜调焦座就很容易固定了。可以用铝管车制一个法兰盘,然后用螺栓固定在平面上。至于调焦,可以使用抽拉调焦,调好后用顶丝固定,实际使用效果也不错。
副镜支架
副镜的安装有两个基本要求,一是其方向、位置可以在一定范围内调节,这是为以后调整光轴作准备的;二是要固定牢靠,避免以后经常重新调整其位置的麻烦,使我们可以把更多的精力用在欣赏望远镜带给我们的美丽星空上。
下面介绍一种设计,它是以上文提到的托板为基础的,注意了副镜各方向的可调节性,同时兼顾了牢靠性,具体可参考下图。
所用四个零件草图如下:
装配方法如下:T型体的一面插入圆柱体的槽中,用一个M3螺栓连接T型体和圆柱体。将圆柱体和副镜托杆用连接件连接,副镜托杆的攻丝的一端用两个螺母固定在托板的副镜托杆安装孔中。
副镜托杆安装孔实际上不是孔而是槽,副镜托杆可以左右移动;连接件可以沿着副镜托杆上下滑动;圆柱体可以在连接件的孔中前后移动,左右转动;副镜可以绕圆柱体的螺栓转动以调节仰角。副镜指向的方便调节为以后光轴的精确调整打下了基础。
以上这种设计对加工条件要求较高,而张大庆先生的设计则要简洁一些。
找长铁片,两端弯90度联结镜筒;找一木块,一端中央锯夹缝,夹住长铁片,另一端锯成45度斜面;副镜夹形状为椭圆,与副镜大小相当,四边伸出四个爪,弯曲90度后可以抓住副镜;副镜夹用薄铁片剪成,通过两个木螺钉与木块联结。
这个设计用很普通的工具就可以完成,而且对主镜遮挡很少;只要加工精确,打孔时再适当留些余量,以后调整光轴也不成问题。
到此,镜筒的设计制作完成了。在使用之前,最好先取下主、副镜,在镜筒内壁均匀地喷一层黑色亚光漆(装饰材料商店有售,罐装,北京地区售价16圆左右),效果还可以。
二、镜架的制作
对于20厘米反射式望远镜,如果没有足够大的赤道仪,那么应该毫不犹豫地选择一种称为道布森结构的地平式支架。
这种结构是美国的约翰•道布森在七十年代发明的,简单、轻便、稳定、实用,早已风靡全球。
下面是道布森结构的分解草图。它主要有三个部分:
耳朵(上图左)
耳朵是望远镜在垂直方向旋转的轴,它可以用直径不小于10厘米的圆形塑料或圆形铝块制成,对称固定于镜筒重心处的两侧,可以直接固定在主镜筒上,也可以在镜筒外套上一个木框,耳朵固定在木框上(这样耳朵的位置可以调节,更有利于主镜的平衡)。
箱子(上图中)
用木板制成,上部有两个“V”形槽,正好与耳朵配合,底部中心穿孔。
底板(上图右)
用木板制成,均布三个凸块(可以用塑料块做),中心有轴。
使用时,箱子放在底板上,被三个塑料块支撑,底板上的轴穿过箱子底部的中心孔,这样,箱子可以绕底板的轴灵活而稳定地做360度水平转动;将镜筒的耳朵放在箱子的“V”形槽上,镜筒可以在90度范围内垂直转动。这样,道布森支架就做好了。
只要底板上三个塑料块分得较开,各接触面摩擦系数合适,道布森装置用起来非常顺手,找目标时望远镜转动灵活,找到目标后,一松手,望远镜不会有反弹或晃动。实际使用表明,即使在高倍率下,目标在目镜视场中仍然非常稳定。
不能自动跟踪是它的缺点,国外很多爱好者在它的两个轴上加了电机,通过计算机控制电机转速,实现了自动跟踪,而且效果不错,有兴趣的同好不妨一试。
三、光轴的调整
望远镜做好后,当我们满怀希望投入观测,却发现像质平平,甚至恒星都不能聚成一个点,这个时候先别怀疑镜子有问题,很可能问题仅仅出在镜片装配上,经过对光轴的重新调整,望远镜里展现出的可能是完全不同的景象。
抛物面反射镜的成像有个特点,在光轴上成像很完美,没有像差,但离开光轴就会有明显的彗差(星点带了小尾巴)。在光轴上,使用一般视场的目镜,视场中心的星点是很锐利的,实际上视场边缘的像差也不易察觉。而如果在光轴外,整个视场中的星点可能都不实,而且离光轴越远这一点越严重。
怎样才算调好光轴了?
当反射镜的光学系统中的两个光轴:主镜(物镜)光轴和目镜光轴都经过副镜上的同一点,且被副镜反射后二者完全重合,也就是成了一个光轴,那么光轴就算调好了。
在缺乏检验手段时,可以通过实际观测来判断光轴是否调好。找一个大气宁静度较好的晴夜,用望远镜的最高倍率(用毫米表示的主镜的直径数)看一颗恒星(如果没有赤道仪则可以看北极星)。把星点放在目镜视场中心(以减少目镜带来的像差),仔细调整焦距,从焦点外调到焦点,然后调到焦点内。如果光轴调整没有问题,可以看到如下图所示的从左到右一系列图象(图中的圆环是光的衍射引起的,散焦后实际上还会看到副镜及其支架的影子,图中没有画出)。
在焦点上星像是否凝结得很实、很细、很锐利,散焦后衍射环是否是同心圆,这些都反映了望远镜的像质。如果散焦后可以看到几圈衍射环,但不象上图中那样完美,四周均匀地带有一些“毛刺”,这说明反射镜面的精度稍差,但光轴调整的还是好的。如果散焦后星点变成了一个小的扇形,而且在目镜视场中移动星象,扇形的发散方向不变,这说明望远镜的光轴需要调整了。
光轴调整步骤及辅助工具
光轴调整可按如下步骤进行:
1. 调节目镜调焦筒使之垂直于主镜筒轴线
2. 调节副镜使之位于主镜筒轴线上
3. 调节副镜使之位于目镜调焦筒正下方
4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心
5. 调节主镜指向,使其光轴与目镜光轴重合
以上只是调光轴的大致方法,具体操作的过程中会有一些问题,有时很难控制精度这里首先介绍几个辅助工具:
1. 带双十字线的窥管:
管的外直径同目镜接口直径,管的一端加盖,盖的正中心挖2mm直径的圆孔,管的另一端用白色棉线对称地拉上双十字线,两线间距3~4mm。管长用如下方法确定:从目镜调焦筒中放入窥管(窥孔在外),窥孔一端与目镜调焦筒外端口平齐,双十字线一端距副镜20~30mm。
做窥管的材料不限(如果你使用的是31.7mm目镜接口,可以考虑用柯达胶卷的黑色包装盒来做窥管),关键是插入目镜调焦筒后要稳固,不能晃动太大。双十字线要拉正,相交处的小正方形与窥孔的连线应该是目镜调焦筒的轴线。
2. 主镜中心定位点
剪一片直径5mm的黑纸,用两面胶准确地粘在物镜的正中心。(因为主镜的中心区域并不参与成像,所以这个黑点不会有负面影响)
3. 主镜筒开口处十字线
在主镜筒开口处用粗线拉十字线,要求两线相互垂直,交点过主镜筒轴线。(在主镜开口处拉上十字线可能会影响对副镜的操作,所以最好标记出十字线与镜筒的四个交点的位置,觉得十字线碍事时可以先把它拆下来,必要时再重新拉上。)
这三个工具制作并不复杂,但你很快会发现它们很有用。借助它们,现在我们可以开始一步一步地调整望远镜光轴了。
0.预调主镜指向
取下副镜,调节主镜后面的螺栓,直到从镜筒开口前看过去,十字线交点、物镜中心黑点、十字线交点在物镜中所成的像三者成一条直线时,表明主镜指向基本正确。(下面专门有一步是调主镜的,预先加这一步操作可以使下面的操作更容易。)
1. 调节目镜调焦筒使之垂直于主镜筒
将窥管装入目镜调焦筒中,从窥孔中观察,可以看到从窥孔到双十字线的连线(实际就是目镜调焦筒轴线)再延长,会与主镜筒壁交于某一点,标记出这一点,用尺子测量其位置,再参考目镜调焦筒在主镜筒的位置,我们就可以判断出目镜调焦筒是否与主镜筒垂直。
2. 调节副镜使之位于主镜筒轴线上
取下窥管,装上副镜,大致调节副镜指向,使眼睛从目镜调焦筒中可以看到经副镜反射所成的主镜的像,同时也应该可以看到副镜和十字线经两次反射后所成的像。从这些像中我们可以看出副镜和十字线的相对位置,如果副镜的圆心和十字线交点重合,说明副镜位于主镜筒轴线上,否则就需要做相应的调节。
3. 调节副镜使之位于目镜调焦筒正下方
从目镜调焦筒方向看进去,副镜显然已经位于调焦筒的下方,但经过这样看精度无法保证。此时,装入窥管,眼睛从窥孔看到的,最外圈是窥管的内壁(双十字线现在不起作用,可以不管),中间是副镜。副镜的外圆轮廓和窥管的内壁轮廓如果是同心圆,说明满足要求,否则要在主镜轴线方向调节副镜。(如果因窥孔太小、光线太暗而看不清楚,可以在窥管正对的主镜筒壁垫上一张白纸,如果窥管太细,看不到副镜的外圆轮廓,可以把窥管往外抽或缩短其长度。)
4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心
在上一步的基础上,一面用眼睛从窥孔中观察,一面调节副镜指向,直到主镜在副镜中所成的像的外圆轮廓、副镜的外圆轮廓二者同心。
5. 调节主镜指向,使其光轴与目镜光轴重合
用手电筒照亮窥管的双十字线,眼睛从窥孔看进去,可以看到双十字线、主镜的中心点所成的像以及双十字线经两次反射所成的像。调节主镜背后的螺栓,使上述三者同心。
至此,反射镜光轴调节完毕。下面给出从窥孔中所能看到的图象,以供参考。
上述各个调节步骤中,根据副镜支架的不同设计,下一步操作会对前一步的结果带来或多或少的影响,所以必要时可以返回前面的操作,可能要有几次反复,最后才能得到满意的结果。第一次调节会费一些工夫,一旦调好后,只要副镜支架稳固,以后的工作就轻松得多,即使为了运输而将主镜重装,一般也只需调节主镜后的螺栓就行了,借助于窥管,可以很快将望远镜调整至最佳状态。
最后有一点需要补充说明,一般认为光轴与副镜的交点在副镜的中心。在长焦距的望远镜中可以认为如此,但在大口径、短焦距的牛顿式反射望远镜中,副镜的尺寸也较大,副镜长边的两端到目镜的距离已经不能再近似认为是一样的了,请看下面的示意图:
光轴相交于副镜的B点,而不是副镜中心所在的A点。这相当于副镜从中心位置向主镜方向和远离目镜的方向都有一个位移。这两个方向的位移量可以用如下公式计算:
位移量=副镜短边长/(4*主镜焦比)
例如我的望远镜副镜短边长35mm,主镜焦比为5,则两个方向的位移量都是1.75mm。
如果有此类短焦距的望远镜,需要把这种情况考虑进去。计算出位移量,在上述第2步调节中,应让副镜稍稍远离目镜方向;在第3步调节中,当我们看到副镜的外圆轮廓和窥管的内壁轮廓是同心圆时,实际上副镜已经向主镜方向有了位移,不需再额外做调节了。
天文望远镜简笔画 按照步骤尝试画一下吧
1、先用钢笔画出望远镜的三角架,我们可以使用矩形工具搭配绘制出三角架的细节。
2、再用灰黑色与灰色搭配填充三角架的暗区与亮区的路径。
3、继续用矩形来画出望远镜的基本轮廓,圆形的边缘可以使用钢笔来绘制。
4、再用海蓝色与天蓝色搭配填充天文望远镜的主体路径,让望远镜的中间的海蓝色,两端为天蓝色。
5、继续画出望远镜边缘上面的圆形小螺丝的路径,望远镜上面的高光路径。
6、我们用灰黑色与灰色搭配填充螺丝的路径,再用白色与淡蓝色分别填充望远镜上面的高光路径,完成天文望远镜简笔画。
天文望远镜 校正光轴的方法
1、调节光轴必须进行充分的热平衡:以前我从没有像今天这样体会到热平衡的重要。今天天还没有完全黑,看到地平30度左右木星很亮,于是抬出210进行观测。从来没有看到如此差的木星,基本上和一个刺猬球一样,差不多就是一个虚焦状态,云带只能看到最浓的那条,而且还时隐时现,没有任何细节可言。仔细分析了一下,第一个原因是木星太低,气流影响大,第二个原因是光轴可能不准,造成口径缩水,锐度下降,第三个原因,就是没有做热平衡。为了确认这一点,我拿出来TMB115又看了一下,虽然没有木星在天顶那么壮观,但是至少可以清晰对焦。对比之后,210确实不应该有这么差的表现,看来最主要的原因还是热平衡的问题。
今天的天气凉,风也比较大,加上210开放式的镜筒,热平衡倒也快,热平衡前,星点散焦的衍射圈呈五星状,根本没法看出同心圆情况,半个小时后基本上衍射圈就比较稳定了,但是只能看出内圈和外圈。热平衡做的越彻底,衍射圈越稳定,对光轴的调节越有利。在热平衡的开始半个小时,我勉强可以做到200倍下分辨出衍射圈,400倍下无法调节。不过随着我不断的折腾,最后镜子热平衡做的应该说还是比较充分的,因此在最后阶段取得了调节的胜利。
2、选择好的目标:从前为了图省事,都是用地面的灯光调节。但是即使是几公里外的灯光,在望远镜的高倍下,仍可以看出细节来,因此这种做法非常不可取。上次我的210就是借助我能找到最远的地面灯光调节的,当时衍射圈已经非常规则,但是今天一看真正的星点,明显的看出不是同心,这也说明如果不是非常完美的地面光源,就一定要选择真正的星点,否则只能越调越差。
对星点选择也有讲究。通过我的反复对比发现,亮星是不合适的,亮星的衍射圈的跳动会更加明显,非常不利于辨别,效果最好的应当是肉眼依稀可见,寻星镜中亮度适中,无毛刺的星体。这种星体在高倍下衍射环会比较暗弱,但是相对稳定得多,有利于辨别调整。
3、准确的区分出位置:折返通常都是三个或者是三组螺丝调节副镜位置。使用90度天顶,目镜中的成像是“上下不变,左右颠倒”,如目镜中看到的左侧,实际上是主镜的右侧,目镜中的上就是主镜的上部,目镜中的左上,就是主镜的右上部,其它依此类推。掌握这个规律后,你就可以知道如何根据衍射环该调节三个螺丝,,完全可以实现一个人自行调节。因此以后再也不用求我们家掌柜子跟我一起弄了,人多手杂,一个人想怎么干怎么干。
4、光轴调节的手法:前面的3项准备工作都做充分了,就要进行最重要的一步,光轴调节。调节前要确保三个螺丝全部都是拧紧状态的,否则即使你最终调节好了,但是螺丝不紧,造成了光轴的稳定性降低,微小的振动就会移位,因此必须在三颗螺丝全部是拧紧状态下进行调节。其实原理非常简单,这三颗螺丝相互联系,当你松A,紧B和C后,A仍然是紧的,因此整个调节过程中始终保持三个螺丝都是在拧紧的状态。
折返的调节一般是焦点内调节的效果比焦点外调节好。焦点内调节的规律是,衍射圈肥的那一边(注意第三条说的上下左右)松,瘦的那边紧,一般都是先松应该松的那一边,然后再做该紧的另一边。
举例:目镜中衍射圈左面肥,那么对应副镜就是应该松右面的螺丝。如果右面正好有一颗螺丝,则没有问题;如果没有罗斯,那这一边的对面肯定有一颗螺丝,因此就是先松其他的两颗螺丝,再紧对面的一颗螺丝。原则上是松多少紧多少,具体幅度根据情况,原则上是不能急于求成,一点一点来,始终保持三颗螺丝的紧张状态。掌握好方法后,很快就能得到要领。
5、找一个好的目镜:一个视场平、边缘好的目镜在调节中也会起到至关重要的作用,我今天的调节中我也深深地体会到,目镜中心的衍射圈变形情况其实和边缘是不一样的,越靠边变形越大,明明调节规则了,但是由于目镜带来的像差就会给你很大的误导,这时一个好的目镜就会省却你很多麻烦。如果目镜素质一般,那么调节过程中尽量使目标始终处于目镜视场的中心位置,这时候反应的图像是最真实的。个人感觉阿贝尔无畸变目镜,也就是我们常说的OR目镜最适合光轴调节,好处是无变形,但是缺点是视场窄,不利于在经委台高倍调节,因为目标容易丢失。
6、倍数选择:选择倍数也很重要,记得一个国外教人调节光轴的文章,C8要上到800倍进行调节,通过这么长时间的实践,感觉基本不可行。理论上说,当然是倍数越高,光轴越精确,但是上到800倍,那怕是600倍需要的支持因素太多了,比如SEEING,支架的稳定性,自动跟踪等,这些都是影响上到高倍的因素。对我的210,实际使用中不会超过200倍,因此首先要保证200倍下衍射圈完美,如果可能的话,对倍数进行翻倍也就是400倍,主要目的不是为了调节,更多的是验证衍射圈的规则性,确保200倍下的完美表现。至于其他型号的镜子,我的建议就是在常用的最高倍下调节,然后翻倍验证即可保证目视的精度。我今天使用ZOOM在600倍下测试恒星星点,但是衍射圈跳动太厉害,但是从偶尔稳定的衍射圈来看,基本规则,因此我确定我的光轴已经接近精确了。
7、衍射圈的大小选择:散焦后出现的衍射圈,大小选择也是经验。一般来说,衍射圈越小,精度越高,也越容易看出不规则性,但是,衍射圈越小,受SEEING的影响越大,衍射圈越不稳定;另一方面,同样的衍射圈大小,倍数越高,越不稳定。因此一般在较低倍数下使用较小的衍射圈,倍数高了以后,就尽量放大衍射圈,使能够稳定在可以辨别的状态就可以了。
另外,调节光轴需要耐心,除了标准的反射有可以调节光轴的工具外,折反射一般都没有专门的工具,即使有价格也是非常昂贵的。既然决定要玩带“反”字头的镜子,光轴调节还是需要掌握好的,否则对镜子的口径绝对是一个浪费,真的不如玩折射。从今天晚上我又再次深刻的体会到,折射仍然有其不可动摇的地位,115和210根本不存在什么可替代性,一句话,一个都不能少。。。。。。打字很累啊,望采纳!
怎么做一个简易的天文望远镜
哈哈~ 我看着怎么这么眼熟。楼上9386900把我先前的回答原封不动抄录过来啦?没关系,没关系!丝毫没有责怪的意思。说实话我还很高兴的。第一次看到自己的话不是自己署名 :)但你没有正面回答人家的问题呀!我那是人家就说要做望远镜说的。这位是指明要做开普勒式望远镜。怎么还叫人家做伽利略望远镜呢?应该这样改一改:
你可以找一片度数较高的凸透镜(高倍放大镜),一片度数较低凸透镜(老花镜片)。先对着窗外某一处。一手拿放大镜靠近眼睛。另一手拿老花镜片放在前面慢慢前后移动。你会看到有个位置可以看清对面的物体,而且近了不少。不过是倒立的。这时你看一看两片透镜间的距离(只要大概就行)。找一个硬纸筒(象卷筒纸芯,保鲜膜芯之类)。截取比刚才实验得到的镜片距离略短一段。在这个外面再卷一个纸筒。要可以抽动,不要太紧。想办法把两片镜片分别固定在这两个纸筒上就成了:)
如何制作天文望远镜?要材料简单
材料:两个直径略有差别的擦手纸内芯硬筒
一个塑料物镜(直径43毫米,焦距为400毫米)
一个塑料目镜(直径17.5毫米,焦距为25毫米)
一只目镜的泡沫塑料镜托
一筒透明胶带
一根米尺
步骤:1.将一个纸芯筒插入另一个纸芯筒之中,两个筒可以移动调节,但不会滑脱。
2.将大物镜平放在纸芯筒的外部一端,用胶带将物镜固定在此处,但胶带尽量不要挡着物镜。
3.泡沫塑料镜托的中央开一个洞口,将小目镜插入洞口。
4.将目镜镜托放入与物镜反方向的望远镜尾部的内筒中。
5.将米尺固定在墙上,从5米处通过目镜看米尺。调节望远镜纸芯筒的伸缩,以便清晰读出米尺上的数字。
6.用望远镜看教室里或窗外远近不同的其他物体。
提醒:不要看太阳,否则会伤了眼睛。