首页 » 问答 » 容斥原理公式大全(容斥原理公式大全只满足一个条件)

容斥原理公式大全(容斥原理公式大全只满足一个条件)

星慧 2024-08-21 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

小学的容斥原理公式不要太复杂

核心公式:

(1)两个集合的容斥关系公式:

A+B=A∪B+A∩B

(2)三个集合的容斥关系公式:

A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

例题1:2004年中央A类真题

某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22 B.18 C.28 D.26

解析:设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)

显然,A+B=26+24=50;A∪B=32-4=28,

则根据公式A∩B=A+B-A∪B=50-28=22

所以,答案为A。

例题2:2004年山东真题

某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人

A.57 B.73 C.130 D.69

解析:设A=会骑自行车的人(68),B=会游泳的人(62)

显然,A+B=68+62=130;A∪B=85-12=73,

则根据公式A∩B=A+B-A∪B=130-73=57

所以,答案为A。

例题3:电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?

解析:设A=看过2频道的人(62),B=看过8频道的人(34)

显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)

则根据公式A∪B=A+B-A∩B=96-11=85

所以,两个频道都没有看过的人数=100-85=15

所以,答案为15。

例题4:2005年中央A类真题

对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:

A.22人 B.28人 C.30人 D.36人

解析:设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)

A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)

B∩C=既喜欢看电影又喜欢看戏剧的人(16)

A∩B∩C=三种都喜欢看的人(12)

A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)

根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)

=148-(100+18+16-12)=26

所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C

=52-16-26+12

=22

两集合容斥原理公式是什么?

两个集合的容斥关系公式:AUB=A+B-A∩B(∩为重合的部分)

三个集合的容斥关系公式:AUBUC=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

详细推理如下:

1、等式右边改造={-C∩A}+A∩B∩C。

2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C

3、等式右边()里指的是下图的1+2+3+4+5+6六部分:

那么AUBUC还缺部分7。

4、等式右边【】号里+C(4+5+6+7)后,相当于AUBUC多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。

5、等式右边{}里减去C∩A(即4+5两部分)后,AUBUC又多减了部分5,

则加上A∩B∩C(即5)刚好是AUBUC。

扩展资料:

三集合容斥问题的核心公式如下:

标准型:|A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。

非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的-2×三个都满足的。

列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。

| A | + | B | + | C | =只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

容斥公式

容斥公式:A∪B=A+B-A∩B。先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

对于容斥原理我们可以利用数学归纳法证明,数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。

容斥原理的公式

也可表示为

设S为有限集,,则

两个集合的容斥关系公式:A∪B =|A∪B| = |A|+|B| - |A∩B |(∩:重合的部分)

三个集合的容斥关系公式:|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |B∩C| - |C∩A| + |A∩B∩C|

详细推理如下:

1、 等式右边改造 = {[(A+B - A∩B)+C - B∩C] - C∩A }+ A∩B∩C

2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C

3、等式右边()里指的是下图的1+2+3+4+5+6六部分:

那么A∪B∪C还缺部分7。

4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,

减去B∩C(即5+6两部分)后,还多加了部分4。

5、等式右边{}里减去C∩A (即4+5两部分)后,A∪B∪C又多减了部分5,

则加上A∩B∩C(即5)刚好是A∪B∪C。

三集合容斥原理公式

三集合容斥原理公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。因为A、B、C与A交B两两的交集它们中都含A交B交C,然而ABC两两交集中应减两次,然而却将ABC两两交集中的A交B交C减了三次,所以应该加上多减的一次ABC的交集。

三集合容斥问题的核心公式:

标准型:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|。

非标准型:|A∪B∪C|=|A|+|B|+|C|,只满足两个条件的-2×三个都满足的。

列方程组:|A∪B∪C|=只满足一个条件的+只满足两个条件的+三个都满足的。

|A|+|B|+|C|=只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

相关文章

  • 暂无相关推荐