首页 » 生活 » 多项式展开(多项式展开定理)

多项式展开(多项式展开定理)

luoke 2024-09-20 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

多项式的n次方展开公式

根据二项式定理,多项式的n次方展开公式,如下图所示:

其中二项式定理如下图所示:

扩展资料:

二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

参考资料:百度百科_二项式定理

n次多项式展开公式

多项式的n次方展开公式

(a+b)^n=a^n+[C(n,1)]a^(n-1)*b+C(n,2)a^(n-2)b^2+……+C(n-1,n)ab^(n-1)+b^n通项T(k+1)=C(n,k)a^(n-k)*b^k

二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664-1665年提出。

公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n

式中,C(n,i)表示从n个元素中任取i个的组合数=n!/(n-i)!i!

扩展资料:

1、二项式定理的意义

牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。

2、二项式定理的重要性

这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率。

参考资料来源:百度百科-二项式定理

多项式展开公式

根据二项式定理,多项式的n次方展开公式,如下图所示:

其中二项式定理如下图所示:

二项式定理

二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。

该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

相关文章

  • 暂无相关推荐