首页 » 生活 » 勾三股四(勾三股四玄武定律)

勾三股四(勾三股四玄武定律)

百闻百科 2024-03-18 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

钩三股四旋五基本公式

a*a+b*b=c*c

勾三股四弦五,是勾股定理的解释。

三角形的两直角边一边为三,一边为四,那么斜边为五

如果直角三角形两直角边分别为a,b,档陆斜边为c,那么a*a+b*b=c*c

提醒: 更好的写法应为:勾三股四弦五

例如一个直角三角形,一边为3CM,一边为4CM,哗袜那另一半为5CM。勾三股四弦五直角三角形的内切圆直径为2。故有 “勾三股四弦五径二”之说。

扩展资料:

勾股定理的推导:

在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在这个定理的证明中,我们需要如下四个辅助定理:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,乱蠢激因此AB²+AC²=BC²,即a²+b²=c²。

此证明是于欧几里得《几何原本》一书第1.47节所提出的。

由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。

参考资料来源:百度百科—沟三股四玄五

勾3股4弦5是什么意思?

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)

中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。

在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。

勾三股四弦五直角三角形的内切圆直径为2。故有 “勾三股四弦五径二”之说。

扩展资料:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:从A点划一直线至对边,使其垂直于对边做哗。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过纯裤行等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘纯闭成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

此证明是于欧几里得《几何原本》一书第1.47节所提出的。

勾三股四弦五角度是什么?

勾3的对角是37度,股4的对角为53度,弦5相对着的角是90度。

详细的解释为:首先由勾3股4弦5知三角形满足勾股定理,是直角三角形;设勾3的对角是A,股4的对角为B。

那么sinA=3/5,A=arcsin3/5=37度。

sinB=4/5,B=arcsin4/5=53度。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理主要意义:

1、勾股定理是联系数学中最基本也是最原始的两个对象——数与猜橘形的第一定理。

2、勾股磨亩定理导致不可通约量的发现,从而穗游团深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。

3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。

4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。

直角三角形,勾3股4弦5数怎样计算得来的

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出 。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)

中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。

扩展资料:

勾股定理的历史发展:

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。

商高说:“…故折矩,勾广三,股修四,经隅五橘誉。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀燃段算经》内的勾股定理做出了详细注释,记录于《圆段段九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

参考资料来源:百度百科-勾股定理

参考资料来源:百度百科-勾三股四弦五

勾三股四的含义是什么

全称是“勾三股四弦五”,即直角三角形的两条亩清直角边(“勾”和“股”)分别为3份和4份长度单位时,这个直角三角形的散悔斜边(“弦”)等于5份长度单位——即勾股定理。

但中国的发明(发现)只限于“勾三股四弦五”迅掘前,直角三角形中,两直角边为a和b,斜边为c,那么a²

+

b²=

c²,反之亦然——这样一个普遍性的结论,是“毕达哥拉斯定理”

勾三股四弦五,是什么

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形(3角度数为36.8698976 °,53.1301024°,90°)。

中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前哪消1100年,人们已经知道如果勾是三,股是四,那么弦就是五。

勾三股四弦五直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。

外国的勾股定理

远在公元前约三千仿碰年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公备缓谈元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

标签:

相关文章

  • 暂无相关推荐