首页 » 生活 » 截止失真(截止失真产生的原因)

截止失真(截止失真产生的原因)

百闻百科 2024-03-21 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

什么是饱和失真和截止失真?如何避免?

饱和失真指放大电路在动态情况下,工作点已有一部分进入饱和区而引起的失真。截止失真指放大电路在动态情况下,工作点已有一部分进入截止区而引起的失真。

三极管的输出和输入正好是反过来的,即负极性输出。假设输入的是正弦波,静态工作点正好合适,即VQ=Vp-p/2(静态工作点电压是正弦颤简波电压峰峰值的一半),那么当输入的波形是正半周时,输出电压波形正好跟负半周波形是一样的;当输入的波形是负半周时,输出电压波形正好跟正半周波形是一样的。如果输入波形的峰峰值的一半大于VQ,那么当输入的波形是正半周时,快到峰值时,三极管就会处于饱和状态,那么此时的输出就不再随输入变化了,出现了饱和失真;即输出得到的负半周正弦波波形就没有谷底了,称之为饱和失真;反之,当输入的波形是负半周时,快到谷值时,三极管就会处于截止状态,乱洞困那么此时的输出就哗念不再随输入变化了,出现了截止失真;即输出得到的正半周正弦波波形就没有峰值了,称之为截止失真。

避免解决方法:

截止失真的解决办法

当输入信号UiUon,保证三极管导通。

饱和失真的解决办法

1、增加VCC 由于三极管饱和的根本原因是集电结收集电子的能力不足,所以增加VCC能够增强集电极收集电子的能力,但必须保证VCC在三极管的能承受范围内,在RC和管子不变的情况下,能够消除饱和失真 。

2、增加基极电阻RB以减小基极电流,从而集电极电流IC=βIB,在集电极电阻RC和集电极电源VCC不变的情况下,由VCE=VCC-βIBRC得集电极电压变大,从而使集电极收集电子能力增强,消除饱和失 。

3、减小集电极电阻,在电路中其他参数不变的情况下,减小集电极电阻RC就减小了在RC上的压降由UCE=VCC-βIBRC知加在集电结的电压增大,也增强了集电极收集电子的能力,从而消除饱和失真。

4、更换一只β较小的管子.在其他参数不变的情况下,换一只放大倍数较小的管子,由UCE=VCC-βIBRC知:在集电极电阻上的压降减小,也即增大了加在集电结的电位,增强了集电结收集电子的能力,从而消除饱和失真,同理由Ⅰ式得β应满足。

什么叫饱和失真?什么叫截止失真?

饱和失真,指的是晶体管因Q点过高,出现的失真。由于三极管饱和的根本原因是集电结收集电子的能力不足,所以增加VCC能够增强集源橡电极收集电子的能力,但必须保证VCC在三极管的能承受范围内,在RC和管子不变的情况下,能够消除饱和失真。

由晶体管截止造成的失真,称为截止失真。Q点设置过低造成的截止失真属于输入端失真,所以只能从输入端解决。只有增大基极电源VBB,才能消除截止失真,改变Rb虽然使的Q点位置变高,但只是改变了输入负载线的斜率,并不能确保使输入信号进入截止区的哪部分曲线重新进入放大区。

扩展资料

截止失真原因:静态工作点Q偏低会产生截止失真。假若基极偏置电阻Rb1较大,静态基极电流IBQ会减小,静态集电极电流ICQ也会减小,静态集电极电压UCEQ却会增大,当输入信号幅度较小时,输出电流Ic和电压UCE仍可不失真;

若输入信号幅度稍大时,则在信号的负半周内,工作状态将进入截止区,输出电流Ic不再随输入信号变化,其底部变平,同时,输出电压UCE的正半周(顶部)变平,出现了失真如图所示。这表明,工作点R选择的也不适当。

参考资料来源:百度百科——饱和失真携裂闹

参考资料来源:百度百辩罩科——截止失真

发生饱和失真和截止失真的原因是什么?

失真情况的产生是静态工作点设置不当造成。

1、截止失真是因为Q点太低,副半周时候管子进入截止状态导致,通过适当减小RB电阻值增大基雹哗极电流改善判渗;

2、饱和失真是因为Q点太高,正半周时候管子进入饱和状态导致,通过增大RB电阻间学校基极电流改善;

3、Q点位置适中的源冲行时候外加输入信号太大,使正负半周某段时间范围内管子分别进入饱和状态和截止状态产生了双向失真,通过输入端接分压电路降低输入信号幅值,或适当增大直流偏置电源电压即可解决。

什么是饱和失真?什么是截止失真?

饱和失真和截止失真,是指信号范围超出晶体管放大电路正常放大范围时,出现的信号波形畸变。由产生畸变的原因不同分为饱和失真和截止孙带失真。

晶体管有三个工作区:饱和区、截止区和线性区(放大区)。在饱和区和截止区晶体管会失去放大能力。

对于共发射极的晶体管基本放大电路,当输入的峰塌凯悔值较大的时候团正,超过了晶体管电路的动态范围,进入饱和或截止区,就会出现失真。进入饱和区引起的失真就是饱和失真;进入截止区引起的失真就是截止失真。

下图是共发射极的晶体管单级基本放大电路的失真示意。

标签:

相关文章

  • 暂无相关推荐