首页 » 爱好 » 向量相乘的坐标公式(向量相乘的坐标公式推导出来的x1X2+y1y2的)

向量相乘的坐标公式(向量相乘的坐标公式推导出来的x1X2+y1y2的)

luoke 2023-03-02 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

坐标向量相乘公式

a=(x1,y1),b=(x2,y2)

a*b=x1*x2+y1*y2

这就是坐标公式

哪里不清欢迎追问,满意谢谢采纳!

向量相乘用坐标表示的公式是什么

向量a(x1,y1),向量b(x2,y2)

向量a点乘向量b等于x1x2+y1y2

扩展资料

实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。

当λ0时,λa的方向与a的方向相同;当λ0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当 |λ| 1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上伸长为原来的|λ|倍

当|λ|1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上缩短为原来的 |λ|倍。

实数p和向量a的点乘乘积是一个数。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

向量积坐标表示公式

向量积|c|=|a×b|=|a||b|sina,b

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从以不超过180度的转角转向时,竖起的大拇指指向是的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。

扩展资料

代数规则:

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

参考资料来源:百度百科-向量积

向量相乘的坐标公式是什么?

向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。

长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。

代数规则:

1、反交换律:a×b=-b×a。

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

向量坐标相乘怎么算?

两个坐标向量相乘是a*b=x1x2+y1y2=|a||b|cosθ。

一般向量之间不叫乘积,而叫数量积,如a*b叫做a与b的数量积或a点乘b。

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。

向量点乘坐标公式

向量点乘坐标公式:Cos(θ)=ab,θ=arccos(ab)。在数学中,向量也称为欧几里得向量、几何向量、矢量,指具有大小和方向的量,它可以形象化地表示为带箭头的线段。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

相关文章

  • 暂无相关推荐