本文目录一览:
10到20的平方是什么?
10到20的平方是指将此数值写成“a×a”的形式,经乘法计算后得到的数值,具体结果如下:
1、10²=10×10=100
2、11²=11×11=121
3、12²=12×12=144
4、13²=13×13=169
5、14²=14×14=196
6、15²=15×15=225
7、16²=16×16=256
8、17²=17×17=289
9、18²=18×18=324
10、19²=19×19=361
11、20²=20×20=400
平方相关定义
1、平方是一种运算,又叫二次方,比如“a”的平方表示“a×a”,简写成“a²”。平方的逆运算就是开平方,也叫做求平方根,平方根写作“±√”。
2、指平方米时,是边长×边长=正方形的面积。
3、平方等于它本身的数只有0和1。
4、一个数的平方具有非负性,即“a²≥0”。若a²+b²=0,则有a=0且b=0。
10到20的平方是多少?
10到20的平方分别是:10²=100、11²=121、12²=144、13²=169、14²=196、15²=225、16²=256、17²=289、18²=324、19²=361、20²=400。
平方数定义:
平方数(或称完全平方数),是指可以写成某个整数的平方的数,即其平方根为整数的数,例如,16= 4× 4,16是一个平方数。
幂的指数(次方)
当幂的指数为负数时,称为“负指数幂”,正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。
如:3的4次方
=3^4
=3×3×3×3
=9×3×3
=27×3
=81
如上面的式子所示,2的6次方,就是6个2相乘,3的4次方,就是4个3相乘。
如果是比较大的数相乘,还可以结算计算器、计算机等计算工具来进行计算。
10到20的平方数
10到20的平方数分别是:10²=100、11²=121、12²=144、13²=169、14²=196、15²=225、16²=256、17²=289、18²=324、19²=361、20²=400。
平方数定义:
平方数(或称完全平方数),是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,16= 4× 4,16是一个平方数。
平方数也称正方形数,若n为平方数,将n个点排成矩形,可以排成一个正方形。
若将平方数概念扩展到有理数,则两个平方数的比仍然是平方数,例如:
若一个整数没有除了 1 之外的平方数为其因子,则称其为无平方数因数的数。
平方数的表达式:
1、方阵;将连续奇数相加,每次的得数正好就产生完全平方数。 一个整数是完全平方数当且仅当相同数目的点能够在平面上排成一个正方形的点阵,使得每行每列的点都一样多。
2、通项公式;对于一个整数 n,它的平方写成 n²。n²等于头 n个正奇数的和。
3、递推公式;每个完全平方数可以从之前的两个平方数计算得到,递推公式为 n² = 2(n − 1)² − (n − 2)² + 2。
4、连续整数的和;完全平方数还可以表示成 n² = 1 + 1 + 2 + 2 + ... + n − 1 + n − 1 + n。
扩展资料:
通项公式
对于一个整数 n,它的平方写成 n²。
n²等于头 n个正奇数的和。在上图中,从1开始,第 n个平方数表示为前一个平方数加上第 n个正奇数,如 5² = 25 = 16 + 9。
即第五个平方数25等于第四个平方数16加上第五个正奇数:9。
递推公式
每个完全平方数可以从之前的两个平方数计算得到,递推公式为 n² = 2(n − 1)² − (n − 2)² + 2。例如,2×5² − 4² + 2 = 2×25 − 16 + 2 = 50 − 16 + 2 = 36 = 6²。
连续整数的和
完全平方数还可以表示成 n² = 1 + 1 + 2 + 2 + ... + n − 1 + n − 1 + n。
例如,4² = 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4。
可以将其解释为在边长为 3 的矩形上添加宽度为 1 的一行和一列,即得到边长为 4 的矩形。
这对于计算较大的数的完全平方数非常有用。
例如: 52² = 50² + 50 + 51 + 51 + 52 = 2500 + 204 = 2704。
参考资料来源:百度百科-平方数