本文目录一览:
- 1、xlnx的导函数是什么
- 2、xlnx在x趋于0的极限是什么?
- 3、请问xlnx等于多少?
- 4、xlnx极限
- 5、xlnx的不定积分怎么算
- 6、xlnx的积分怎么求
xlnx的导函数是什么
利用乘积的导数公式,得
(xlnx)'=lnx+x * 1/x
=lnx+1 。
xlnx在x趋于0的极限是什么?
xlnx在x趋于0的极限如下:
=lim(x→0)lnx/(1/x)∞/∞。
用洛必达法则。
=lim(x→0)(1/x)/(-1/x²)。
=lim(x→0)(-x)。
=0。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
请问xlnx等于多少?
计算过程如下:
ln(1/x)
=ln[x^(-1)]
=-lnx
那么-xln(1/x)=-x*(-lnx)=xlnx
xlnx=-xln(1/x)
对数意义:
对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。
在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a0,且a≠1),那么数x叫做以a为底N的对数,记作x=loga N,其中,a叫做对数的底数。
xlnx极限
xlnx极限:当x→0时,xlnx的极限时0。
解题过程:
原式等于lnx除以1/x,分子分母都是无穷,用洛必达法则法则,求导得到结果是-x,x趋于0,那么-x=0,故极限就是0。
洛必达法则要注意必须分子与分母都是0或者都是∞时才可以使用,否则会导致错误;如果洛必达法则使用后得到的极限是不存在的(振荡型的),不代表原极限就不存在,如lim(x→∞)sinx/x就不可以。
xlnx的不定积分怎么算
∫xlnxdx=(1/2)x²lnx-(1/4)x²+C。(C为积分常数)
解答过程如下:
∫xlnxdx
=(1/2)∫lnxd(x²)
=(1/2)x²lnx-(1/2)∫x²*(1/x)dx
=(1/2)x²lnx-(1/2)∫xdx
=(1/2)x²lnx-(1/4)x²+C
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
积分都满足一些基本的性质。在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。
参考资料来源:百度百科——不定积分
xlnx的积分怎么求
过程如下:
∫xlnxdx
=(1/2)∫lnxd(x²)
=(1/2)x²lnx-(1/2)∫x²*(1/x)dx
=(1/2)x²lnx-(1/2)∫xdx
=(1/2)x²lnx-(1/4)x²+C
扩展资料:
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个l上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。