首页 » 爱好 » 三角函数变换(高一数学诱导公式总结)

三角函数变换(高一数学诱导公式总结)

胜艺 2023-01-22 0

扫一扫用手机浏览

文章目录 [+]

本文目录一览:

三角函数如何变换?

三角恒等变换公式如下:

cos(α+β)=cosα·cosβ-sinα·sinβ。

cos(α-β)=cosα·cosβ+sinα·sinβ。

sin(α+β)=sinα·cosβ+cosα·sinβ。

sin(α-β)=sinα·cosβ-cosα·sinβ。

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。

定号法则

将α看做锐角(注意是“看做”),按所得的角的来象垍限头樤,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

三角函数恒等变换公式是什么?

三角函数恒等变换公式是cos(α+β)=cosα·cosβ。

三角恒等变化有很多特殊化和一些推广,记得结论会对今后的做题减少很多计算量,提高解题的速度。毕竟,在高考中三角恒等变换只是一题中的组成部分,也是最关键的一部分。所以,这些公式对于大家或多或少有些作用,理解记忆比死记硬背要强的远。

三角函数恒等变换公式举例:

例1在代数中,一个解析式用与它恒等的解析式来代替称为恒等变换或恒等代换。

例2在几何中,若一个变换把点变为它本身,这样的变换称为恒等变换。一个几何变换φ与它的逆变换φ-1的乘积φ-1φ永远是恒等变换。

例3某一几何变换中,一条直线仍变为这条直线本身,这种变换不一定是恒等变换。如关于直线的对称变换,把垂直于对称轴的直线变为它本身,但每个点(轴上的点除外)的位置都改变了,所以这个变换不是恒等变换。

三角函数是怎样变换的?

三角函数与e指数变换是傅里叶变换。具体如下:

根据欧拉公式e^jx=cosx+jsinx,任意正弦、余弦项可以用复指表示,即cosx=(e^jx+e^-jx)/2,sinx=(e^jx-e^-jx)/2j。

所以,任何一个周期函数f(x)既可以在三角函数系上表出也可以在复指数系1,e^jx,……,e^jnx上表出,在不同的坐标系之间,存在映射关系。

一般情况下,N点的傅里叶变换对为:

其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅里叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅里叶变换,Cooley-Tukey算法可导出DIT和DIF算法。

三角函数的转换公式

sin(-α)= -sinα;

cos(-α) = cosα;

sin(π/2-α)= cosα;

cos(π/2-α) =sinα;

sin(π/2+α) = cosα;

cos(π/2+α)= -sinα;

sin(π-α) =sinα;

cos(π-α) = -cosα;

sin(π+α)= -sinα;

cos(π+α) =-cosα;

tanA= sinA/cosA;

tan(π/2+α)=-cotα;

tan(π/2-α)=cotα;

tan(π-α)=-tanα;

tan(π+α)=tanα

扩展资料

三角函数化简与求值时需要的知识储备:

①熟记特殊角的三角函数值;

②注意诱导公式的灵活运用;

③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值.

(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

参考资料:百度百科-三角函数公式

相关文章

  • 暂无相关推荐