本文目录一览:
- 1、反函数的公式有哪些?(要全)
- 2、反函数公式是什么?
- 3、反函数公式
反函数的公式有哪些?(要全)
一、判断反函数是否存在:
由反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同:
1、先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁x₂ 时,有 y₁y₂ ,则称y=f(x)在D上严格单调递增;当 x₁x₂ 时,有 y₁y₂,则称 y=f(x) 在D上严格单调递减。
2、再判断该函数与它的反函数在相应区间上单调性是否一致;
满足以上条件即反函数存在。
二、具体求法:
例如 求 y=x^2 的反函数。
x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
扩展资料:
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1x2时,有y1y2,则称y=f(x)在D上严格单调递增;当x1x2时,有y1y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'x,都有y'y;任一x''x,都有y''y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1y2矛盾。
因此x1x2,即当y1y2时,有f-1(y1)f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。
参考资料来源:百度百科 - 反函数
反函数公式是什么?
反函数公式是y=f﹣¹(x) 。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣¹(x)。反函数y=f﹣¹(x)。的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
反函数性质
1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
2、一个函数与它的反函数在相应区间上单调性一致。
3、大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
反函数公式
1反函数没有具体的公式
2反函数有定义的。
就是由y=f(x)得x=g(y),则呈y=f(x)与x=g(y)互为反函数,
一般百x=g(y)记作y=f^(-1)(x)。