本文目录一览:
- 1、求一个数的平方根怎么算
- 2、如何求平方根?
- 3、平方根怎么算
求一个数的平方根怎么算
开方的计算步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商(2×30除256,所得的最大整数是 4,即试商是4);
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(2×30+4)×4=256,说明试商4就是平方根的第二位数);
6、用同样的方法,继续求平方根的其他各位上的数.
扩展资料:
牛顿迭代法:
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。可以采取下面办法:
比如136161这个数字,首先找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。先计算0.5(350+136161/350),结果为369.5。
再计算0.5(369.5+136161/369.5)得到369.0003,发现369.5和369.0003相差无几,并且369²末尾数字为1。有理由断定369²=136161。
一般来说,能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算
首先发现600²469225700²,可以挑选650作为第一次计算的数。即算0.5(650+469225/650)得到685.9。而685附近只有685²末尾数字是5,因此685²=469225。从而
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。实际中这种算法也是计算机用于开方的算法。
参考资料来源:百度百科-开平方运算
如何求平方根?
例:求256的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将256,分成两段:
2,56
表示平方根是两位数(XY,X表是平方根十位上数,Y表示个位数)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是2,2的平方根是大约等于1.414(这些尽量要记得,100以内的,尤其是能开整数的),由于2的平方根1.414大于1和小于2,所以取整数部分是1作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是1。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是2.第二步计算出最高数是1
2减去1的平方=1
将1与第二段数(56)组成一个第一个余数:156
第四步:把第二步求得的最高位数(1)乘以20去试除第一个余数(156),取所得结果的整数部分作为第一个试商。
例: 156除以(1乘20)=7.8
第一个试商就是7
第五步:第二步求得的的最高位数(1)乘以20再加上第一个试商(7)再乘以第一个试商(7)。
(1*20+7)*7
如果:(1*20+7)*7小于等于156,则7就是平方根的第二位数.
如果:(1*20+7)*7大于156,将第一个试商7减1,即用6再计算。
由于:(1*20+6)*6=156所以,6就是第平方根的第二位数。
例:求55225的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将55225,分成三段:
5,52,25
表示平方根是三位数(XYZ)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是5,5的平方根是(2点几)大于2和小于3,所以取整数部分是2作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是2。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是5.第二步计算出最高数是2
5减去2的平方=1
将1与第二段数(52)组成一个第一个余数:152
第四步:把第二步求得的最高位数(2)乘以20去试除第一个余数(152),取所得结果的整数部分作为第一个试商。
例: 152除以(2乘20)=3.8
第一个试商就是3
第五步:第二步求得的的最高位数(2)乘以20再加上第一个试商(3)再乘以第一个试商(3)。
(2*20+3)*3
如果:(2*20+3)*3小于等于152,则3就是平方根的第二位数.
如果:(2*20+3)*3大于152,将第一个试商3减1,即用2再计算。
由于:(2*20+3)*3小于152所以,3就是第平方根的第二位数。
第六步:用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)
7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)
平方根怎么算
平方根计算方法一:能简化的根式先尽量简化。再将根数相乘,得出结果。最后把任何可以简化为完全平方数的数分离出来。方法二:能简化的根式先尽量简化。开始简化根数。再把根数进行相乘。然后因式分解出完全平方数。最后将系数相乘得出结果。
平方根
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。
算术平方根
一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根。
算术平方根与平方根的联系
1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。
2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。
3、0的算术平方根和平方根相同,都是0。